Gradio 月活用户突破 100 万!
阅读更多Gradio 月活用户突破 100 万!
阅读更多Gradio 是创建高度可定制仪表板的绝佳方式。Gradio 自带三个原生绘图组件:gr.LinePlot
、gr.ScatterPlot
和 gr.BarPlot
。所有这些绘图都具有相同的 API。让我们来看看如何设置它们。
绘图组件接受 pandas Dataframe 作为其值。绘图组件还接受 x
和 y
参数,它们分别代表表示 x 轴和 y 轴的列名。这是一个简单的示例
import gradio as gr
import pandas as pd
import numpy as np
import random
df = pd.DataFrame({
'height': np.random.randint(50, 70, 25),
'weight': np.random.randint(120, 320, 25),
'age': np.random.randint(18, 65, 25),
'ethnicity': [random.choice(["white", "black", "asian"]) for _ in range(25)]
})
with gr.Blocks() as demo:
gr.LinePlot(df, x="weight", y="height")
demo.launch()
所有绘图组件都具有相同的 API,因此你可以将其替换为 gr.ScatterPlot
import gradio as gr
from data import df
with gr.Blocks() as demo:
gr.ScatterPlot(df, x="weight", y="height")
demo.launch()
dataframe 中的 y 轴列应为数值类型,但 x 轴列可以是字符串、数字、类别或日期时间等任何类型。
import gradio as gr
from data import df
with gr.Blocks() as demo:
gr.ScatterPlot(df, x="ethnicity", y="height")
demo.launch()
你可以使用 color
参数将绘图分解为多个系列。
import gradio as gr
from data import df
with gr.Blocks() as demo:
gr.ScatterPlot(df, x="weight", y="height", color="ethnicity")
demo.launch()
如果你希望为系列分配特定的颜色,请使用 color_map
参数,例如 gr.ScatterPlot(..., color_map={'white': '#FF9988', 'asian': '#88EEAA', 'black': '#333388'})
颜色列也可以是数值类型。
import gradio as gr
from data import df
with gr.Blocks() as demo:
gr.ScatterPlot(df, x="weight", y="height", color="age")
demo.launch()
你可以使用 x_bin
和 y_aggregate
参数将值聚合到组中。如果你的 x 轴是数值类型,则提供 x_bin
将创建直方图样式的分箱
import gradio as gr
from data import df
with gr.Blocks() as demo:
gr.BarPlot(df, x="weight", y="height", x_bin=10, y_aggregate="sum")
demo.launch()
如果你的 x 轴是字符串类型,它们将自动充当类别箱
import gradio as gr
from data import df
with gr.Blocks() as demo:
gr.BarPlot(df, x="ethnicity", y="height", y_aggregate="mean")
demo.launch()
你可以使用 .select
监听器选择绘图的区域。单击并拖动下面的绘图以选择绘图的一部分。
import gradio as gr
from data import df
with gr.Blocks() as demo:
plt = gr.LinePlot(df, x="weight", y="height")
selection_total = gr.Number(label="Total Weight of Selection")
def select_region(selection: gr.SelectData):
min_w, max_w = selection.index
return df[(df["weight"] >= min_w) & (df["weight"] <= max_w)]["weight"].sum()
plt.select(select_region, None, selection_total)
demo.launch()
你可以结合此功能和 .double_click
监听器,通过更改 x_lim
来创建一些放大/缩小效果,x_lim
设置 x 轴的边界
import gradio as gr
from data import df
with gr.Blocks() as demo:
plt = gr.LinePlot(df, x="weight", y="height")
def select_region(selection: gr.SelectData):
min_w, max_w = selection.index
return gr.LinePlot(x_lim=(min_w, max_w))
plt.select(select_region, None, plt)
plt.double_click(lambda: gr.LinePlot(x_lim=None), None, plt)
demo.launch()
如果你有多个具有相同 x 列的绘图,你的事件监听器可以定位所有其他绘图的 x 轴限制,以便 x 轴保持同步。
import gradio as gr
from data import df
with gr.Blocks() as demo:
plt1 = gr.LinePlot(df, x="weight", y="height")
plt2 = gr.BarPlot(df, x="weight", y="age", x_bin=10)
plots = [plt1, plt2]
def select_region(selection: gr.SelectData):
min_w, max_w = selection.index
return [gr.LinePlot(x_lim=(min_w, max_w))] * len(plots)
for plt in plots:
plt.select(select_region, None, plots)
plt.double_click(lambda: [gr.LinePlot(x_lim=None)] * len(plots), None, plots)
demo.launch()
看看如何拥有一个交互式仪表板,其中绘图是其他组件的功能。
import gradio as gr
from data import df
with gr.Blocks() as demo:
with gr.Row():
ethnicity = gr.Dropdown(["all", "white", "black", "asian"], value="all")
max_age = gr.Slider(18, 65, value=65)
def filtered_df(ethnic, age):
_df = df if ethnic == "all" else df[df["ethnicity"] == ethnic]
_df = _df[_df["age"] < age]
return _df
gr.ScatterPlot(filtered_df, inputs=[ethnicity, max_age], x="weight", y="height", title="Weight x Height")
gr.LinePlot(filtered_df, inputs=[ethnicity, max_age], x="age", y="height", title="Age x Height")
demo.launch()
过滤和控制可视化中呈现的数据就是这么简单!